Main meetings/events from December 2017 to March 2018

Members of the SKA Pulsar Science Working Group (SKA-PSWG) and the various Pulsar Timing Array (PTA) consortia have attended the following meetings during this time period:

  • “IPTA Hack Week,” Dec. 11-15, 2017, Flatiron Institute. This meeting aimed to deliver a first analysis of the IPTA Data Release 2, bring all attendees up to speed on Bayesian PTA analysis codes, and determine new data-quality standards.
  • “The Big Impact of a Big Dish: Science with the Effelsberg 100-m telescope,” Feb. 20-21, 2018, MPIfR. This meeting celebrated the scientific achievements of the Effelsberg telescope, including pulsar successes, while looking forward to new science.
  • “34th Pacific Coast Gravity Meeting,” March 16-17, 2018, Caltech. This meeting was a general conference on all areas of gravitational physics.

Publications related to the PSWG from December 2017 to March 2018

During these months, the members of the PSWG and their collaborators have published and/or submitted to international refereed journals many papers dealing with research of interest for the SKA-PSWG. A selected listing of papers is below.

  1. Lam, M. T., Ellis, J. A., Grillo, G., Jones, M. L., Hazboun, J. S., Brook, P. R., Turner, J. E., Chatterjee, S., Cordes, J. M., Lazio, T. J. W., DeCesar, M. E., Arzoumanian, Z., Blumer, H., Cromartie, H. T., Demorest, P. B., Dolch, T., Ferdman, R. D., Ferrara, E. C., Fonseca, E., Garver-Daniels, N. Gentile, P. A., Gupta, V., Lorimer, D. R., Lynch, R. S., Madison, D. R., McLaughlin, M. A., Ng, C., Nice, D. J., Pennucci, T. T., Ransom, S. M., Spiewak, R., Stairs, I. H., Stinebring, D. R., Stovall, K., Swiggum, J. K., Vigeland, S. J., Zhu, W. W., “A Second Chromatic Timing Event of Interstellar Origin toward PSR J1713+0747,” ApJL, submitted, https://arxiv.org/abs/1712.03651 . This paper discusses a decrease in the dispersion measure toward PSR J1713+0747 in 2016 and its implications for high-precision timing analysis.
  2. Keane, E. F., Barr, E. D., Jameson, A., Morello, V., Caleb, M., Bhandari, S., Petroff, E., Possenti, A., Burgay, M., Tiburzi, C., Bailes, M., Bhat, N. D. R., Burke-Spolaor, S., Eatough, R. P., Flynn, C., Jankowski, F., Johnston, S., Kramer, M., Levin, L., Ng, C. van Straten, W., Krishnan, V. Venkatraman, ” The SUrvey for Pulsars and Extragalactic Radio Bursts – I. Survey description and overview, ” MNRAS 471, 116-135 (2018). https://ui.adsabs.harvard.edu/#abs/2018MNRAS.473..116K/abstract . This paper describes the SUPERB survey and reports on the first 10 pulsars discovered in the project, including two millisecond pulsars in binary systems.
  3. Arzoumanian, Zaven, Brazier, Adam, Burke-Spolaor, Sarah, Chamberlin, Sydney, Chatterjee, Shami, Christy, Brian, Cordes, James M., Cornish, Neil J., Crawford, Fronefield, Thankful Cromartie, H., Crowter, Kathryn, DeCesar, Megan E., Demorest, Paul B., Dolch, Timothy, Ellis, Justin A., Ferdman, Robert D., Ferrara, Elizabeth C., Fonseca, Emmanuel, Garver-Daniels, Nathan, Gentile, Peter A. Halmrast, Daniel, Huerta, Eliu, Jenet, Fredrick A., Jessup, Cody, Jones, Glenn, Jones, Megan L., Kaplan, David L., Lam, Michael T., Lazio, T. Joseph W., Levin, Lina, Lommen, Andrea, Lorimer, Duncan R., Luo, Jing, Lynch, Ryan S., Madison, Dustin, Matthews, Allison M., McLaughlin, Maura A., McWilliams, Sean T., Mingarelli, Chiara, Ng, Cherry, Nice, David J., Pennucci, Timothy T., Ransom, Scott M., Ray, Paul S., Siemens, Xavier, Simon, Joseph, Spiewak, Renee, Stairs, Ingrid H., Stinebring, Daniel R., Stovall, Kevin, Swiggum, Joseph K., Taylor, Stephen R., Vallisneri, Michele, van Haasteren, Rutger, Vigeland, Sarah J., Zhu, Weiwei, “The NANOGrav Eleven-year Data Set: High-precision timing of 45 Millisecond Pulsars,” ApJ, in press, https://arxiv.org/abs/1801.01837 . This paper presents data, timing solutions and implications for distance and mass measurements for the NANOGrav 11-year data set.
  4. Arzoumanian, Z., Baker, P. T., Brazier, A., Burke-Spolaor, S., Chamberlin, S. J., Chatterjee, S., Christy, B., Cordes, J. M., Cornish, N. J., Crawford, F., Thankful Cromartie, H., Crowter, K., DeCesar, M., Demorest, P. B., Dolch, T., Ellis, J. A., Ferdman, R. D., Ferrara, E., Folkner, W. M., Fonseca, E. Garver-Daniels, N., Gentile, P. A., Haas, R., Hazboun, J. S., Huerta, E. A., Islo, K., Jenet, F., Jones, G., Jones, M. L., Kaplan, D. L., Kaspi, V. M., Lam, M. T., Lazio, T. J. W., Levin, L., Lommen, A. N., Lorimer, D. R., Luo, J., Lynch, R. S., Madison, D. R., McLaughlin, M. A., McWilliams, S. T., Mingarelli, C. M. F., Ng, C., Nice, D. J., Park, R. S., Pennucci, T. T., Pol, N. S., Ransom, S. M., Ray, P. S., Rasskazov, A., Siemens, X., Simon, J., Spiewak, R., Stairs, I. H., Stinebring, D. R., Stovall, K., Swiggum, J., Taylor, S. R., Vallisneri, M., Vigeland, S., Zhu, W. W., “The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background,” ApJ, submitted, https://arxiv.org/abs/1801.02617 . This paper uses the NANOGrav 11-year data set to constrain the stochastic gravitational-wave background and source models. The analysis includes a Bayesian approach to modeling systematic uncertainties in Solar System ephemerides.
  5. Zhu, W. W., Desvignes, G., Wex, N., Caballero, R. N., Champion, D. J., Demorest, P. B., Ellis, J. A., Janssen, G. H., Kramer, M., Krieger, A., Lentati, L., Nice, D. J., Ransom, S. M., Stairs, I. H., Stappers, B. W., Verbiest, J. P. W., Arzoumanian, Z., Bassa, C. G., Burgay, M., Cognard, I. Crowter, K., Dolch, T., Ferdman, R. D., Fonseca, E., Gonzalez, M. E., Graikou, E., Guillemot, L., Hessels, J. W. T., Jessner, A., Jones, G., Jones, M. L., Jordan, C., Karuppusamy, R., Lam, M. T., Lazaridis, K., Lazarus, P., Lee, K. J., Levin, L., Liu, K., Lyne, A. G., McKee, J. W., McLaughlin, M. A., Osłowski, S., Pennucci, T., Perrodin, D., Possenti, A., Sanidas, S., Shaifullah, G., Smits, R., Stovall, K., Swiggum, J., Theureau, G., Tiburzi, C., “Tests of Gravitational Symmetries with Pulsar Binary J1713+0747,” MNRAS, submitted, https://arxiv.org/abs/1801.02617 . This paper combines NANOGrav and EPTA data on the extremely stable millisecond pulsar PSR J1713+0747 and demonstrates its use in new tests of gravitational symmetries.
  6. Freire, Paulo C. C., Ridolfi, Alessandro, “An algorithm for determining the rotation count of pulsars,” MNRAS, in press, https://arxiv.org/abs/1802.07211 . This paper presents a new automated algorithm for determining phase-connected timing solution for pulsars with sparse data sets, something that is likely to be extremely useful for SKA-discovered pulsars.
  7. Becker, Werner, Kramer, Michael, Sesana, Alberto, “Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection,” Space Science Reviews, 215, 30 (2018), “Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection,” Space Science Reviews, 215, 30 (2018). https://ui.adsabs.harvard.edu/#abs/2018SSRv..214…30B/abstract . This review article discusses precision pulsar timing, current applications and future prospects.
  8. Bhattacharyya, B., Lyne, A. G., Stappers, B. W., Weltevrede, P., Keane, E. F., McLaughlin, M. A., Kramer, M., Jordan, C., Bassa, C., ” A Long-term study of three rotating radio transients,”MNRAS, in press, https://arxiv.org/abs/1803.10277 . This study follows 3 RRATs over decade-long timescales, looking at variable pulse emission rates and investigating the glitches in one object.
  9. Guo, Y. J., Lee, K. J., Caballero, R. N., “A dynamical approach in exploring the unknown mass in the Solar system using pulsar timing arrays,” MNRAS 475, 3644 (2018), https://ui.adsabs.harvard.edu/#abs/2018MNRAS.475.3644G/abstract . This paper presents a Bayesian algorithm to use pulsar timing array data to detect currently unknown mass in the solar system.
  10. Shaw, B., Stappers, B. W., Weltevrede, P., “Resolving discrete pulsar spin-down states with current and future instrumentation,” MNRAS 475, 5443 (2018), https://ui.adsabs.harvard.edu/#abs/2018MNRAS.475.5443S/abstract . This paper investigates the observability of magnetospheric transition events in switching pulsars, and concludes that high-cadence observations will continue to be necessary even with future instrumentation.
  11. Dai, S., Johnston, S., Hobbs, G., “Prospects for discovering pulsars in future continuum surveys using variance imaging,” MNRAS 472, 1458 (2017), http://adsabs.harvard.edu/abs/2017MNRAS.472.1458D . This paper reports on results of simulations developed to predict the number of pulsars that can be discovered using the variance imaging technique in future continuum surveys, including the Australian SKA Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) and an all-sky continuum survey with SKA-MID.

Report provided by the Pulsars SWG